Enzymes is an Essential Component of its Mechanism of Action Franck E. Dayan^{a,*}, Agnes M. Rimando^a, Mario R. Tellez^a, Brian E. Scheffler^a,

Bioactivation of the Fungal Phytotoxin 2,5-Anhydro-D-glucitol by Glycolytic

Thibaut Roy^b, Hamed K. Abbas^c and Stephen O. Duke^a ^a USDA-ARS Natural Products Utilization Research Unit, P.O. Box 8048, University,

MS 38677, USA. Fax 662-915-1035. E-mail: fdayan@ars.usda.gov ^b Laboratoire de Biologie Moléculaire et Cellulaire, Université de Bourgogne, 21000 Dijon, France

^c USDA-ARS Crop Genetics & Production Research Unit, P.O. Box 350, Stoneville, MS 38776, USA

* Author for correspondence and reprint requests

Z. Naturforsch. **57c**, 645–653 (2002); received February 27/March 27, 2002

Bioactivation of Phytotoxin, Plant/Pathogen Interaction, Inhibition of Aldolase An isolate of Fusarium solani, NRRL 18883, produces the natural phytotoxin 2,5-anhydrop-glucitol (AhG). This fungal metabolite inhibited the growth of roots (I_{50} of 1.6 mM), but it

did not have any *in vitro* inhibitory activity. The mechanism of action of AhG requires enzymatic phosphorylation by plant glycolytic kinases to yield AhG-1,6-bisphosphate (AhG-1,6bisP), an inhibitor of Fru-1,6-bisP aldolase. AhG-1,6-bisP had an I_{50} value of 570 μ m on aldolase activity, and it competed with Fru-1,6-bisP for the catalytic site on the enzyme, with a K_i value of 103 μ m. The hydroxyl group on the anomeric carbon of Fru-1,6-bisP is required for the formation of an essential covalent bond to ζ amino functionality of lysine 225. The

absence of this hydroxyl group on AhG-1,6-bisP prevents the normal catalytic function of aldolase. Nonetheless, modeling of the binding of AhG-1,6-bisP to the catalytic pocket shows

that the inhibitor interacts with the amino acid residues of the binding site in a manner similar to that of Fru-1,6-bisP. The ability of F. solani to produce a fructose analog that is

bioactivated by enzymes of the host plant in order to inhibit a major metabolic pathway illustrates the intricate biochemical processes involved in plant-pathogen interactions.